掺杂 Eu³⁺离子的钨酸锂的固相合成及其发光特性^{*}

杨水金1,2,孙聚堂2

(1. 湖北师范学院 化学与环境工程系,湖北 黄石 435002;

2. 武汉大学 化学与分子科学学院,湖北 武汉 430072)

摘 要:采用固相反应法合成了掺杂 Eu^{3+} 的 Li_2WO_4 材料,并通过 X 射线粉末衍射对其结构进行了表征,掺杂 Eu^{3+} 的 Li_2WO_4 的晶体结构属四方晶系,晶胞参数 a = 14.2780 Å, c = 9.5863 Å,属 R $\overline{3}$ (No. 148) 空间群,测定了 其激发光谱和发射光谱,探讨了掺杂 Eu^{3+} 的 Li_2WO_4 的发光特性。

关键词: Eu^{3+} ; Li_2WO_4 ;合成;发光

中图分类号:O612.6;O614.33;O643.13 文献标识码:A

文章编号:1004-0277(2004)01-0017-03

钨和稀土是我国的丰产元素,为寻找这类材料 的新型功能特性,作者在合成掺杂稀土离子的单钨 酸盐、混合碱土金属钨酸盐、卤钨酸盐、同多钨酸盐、 杂多钨酸盐^[1~5]等体系的系统研究基础上,采用固 相反应法合成掺杂铕离子的钨酸锂并对其发光特性 进行研究,探讨了 Eu³⁺在 Li₂WO₄ 中的发光和能量 传递机理。

1 实验部分

1.1 试剂及样品的制备

掺杂铕离子的钨酸锂的合成方法:按一定摩尔 比 精 确 称 量 Li_2CO_3 、 WO_3 和 Eu_2O_3 (纯 度 为 99.99%),在玛瑙研钵中研磨混合均匀,装入高铝坩 埚中,在高温箱式电炉中于 750 C 恒温灼烧 3h,然后 随炉冷至室温,研细即得掺杂铕离子的钨酸锂的结 晶粉末。

1.2 仪器与测试

粉末衍射分析用岛津 XRD-6000 型 X 射线衍 射仪,由石墨单色器滤波,用铜靶 K_{al}辐射,在管电 压 40 kV,管电流 30 mA 的条件下测定,扫描范围 $10^{\circ} \sim 80^{\circ}$ 。发射光谱和激发光谱用岛津 RF-5000 型 荧光分光光度计测定。

2 结果与讨论

2.1 粉末 X 射线衍射数据

 Li_2WO_4 的粉末 X 射线衍射数据如表 1 所示。 表 1 的 XRD 证实了 Li_2WO_4 的晶体结构属四方晶 系,其衍射数据经计算机处理表明: Li_2WO_4 属均一 晶相,晶胞参数 a = 14.2780Å, c= 9.5863Å,属 R $\overline{3}$ (No.148) 空间群,与 JCPDS 12-760 卡片一致。

图 1 示出了 Li_2WO_4 : xEu 的 XRD 谱。由图 1 可知, Eu^{3+} 离子浓度达到 Li_2WO_4 基质摩尔分数的 0.16 时, Li_2WO_4 基质材料的结构基本没有发生变 化。

2.2 发光特性

掺杂 0.06%(摩尔分数) Eu^{3+} 离子的基质材料 Li_2WO_4 (以 Li_2WO_4 : 0.06Eu 表示)的激发光谱和 发射光谱示于图 2。

从图 2 可以看出, Li_2WO_4 : 0.06Eu 荧光体在 以 612 nm 作监测波长测得的激发光谱中, 各激发 带均为 Eu^{3+} 离子的 4f 壳层内的能量吸收, 而位于 311 nm 处有一较强的宽带峰, 半高峰宽约 50nm, 表明 Li_2WO_4 基质对紫外光吸收能力较强, 基质吸 收光能量后可有效地传递给 Eu^{3+} 离子, 使 Eu^{3+} 离 子能高效发光, 基质 Li_2WO_4 本身不仅起骨架结构 作用, 而且对发光有贡献。表 2 列出了 Li_2WO_4 : 0.06Eu 荧光体中 Eu^{3+} 的激发光谱及跃迁归属。

物质的荧光光谱是 Eu³⁺离子的⁵D₀ 能级向较低 的⁷F₁ 能级跃迁的结果。根据电偶极子跃迁和磁偶极

^{*} 收稿日期:2002-11-16

基金项目:国家自然科学基金(29971024);湖北省教育厅重点科研基金(2002A00008)资助项目

作者简介:杨水金(1964-),男,湖北武穴人,教授,在读博士,主要从事钨化学与无机功能材料的研究及无机化学教学工作。

表 1 Li₂WO₄ 的粉末 X 射线衍射数据 Table 1 XRD data of Li₂WO₄

$2\theta/$ °	I/I_1	$d_{exp}/{\rm \AA}$	h k l	$2\theta/$ °	I/I_1	$d_{exp}/{\rm \AA}$	h k l	2θ/ °	I/I_1	$d_{exp}/{\rm \AA}$	h k l
12.4075	6	7.12816	1 1 0	36.7044	3	2.44651	232	51.4588	19	1.77439	1 2 5
17.0643	4	5.19195	021	37.7202	15	2.38292	223	52.4263	6	1.74390	612
19.9012	38	4.45778	012	38.2421	6	2.35159	$1 \ 0 \ 4$	52.6527	4	1.73693	603
21.1210	100	4.20300	2 1 1	39.5408	11	2.27730	$2 \ 4 \ 1$	53.0602	12	1.72455	054
21.5122	8	4.12745	300	40.9143	11	2.20396	502	54.0698	5	1.69471	621
23.4861	6	3.78483	202	42.3370	6	2.13313	2 1 4	54.2886	3	1.68839	523
24.8775	18	3.57621	220	42.9095	4	2.10599	4 2 2	55.8577	4	1.64462	710
26.6167	25	3.34634	$1 \ 2 \ 2$	44.8070	6	2.02111	152	56.3155	3	1.63233	$5\ 1\ 4$
27.5556	19	3.23442	1 3 1	45.4165	19	1.99539	4 3 1	57.6485	4	1.59772	006
30.6549	37	2.91410	113	45.6050	4	1.98758	134	58.9982	9	1.56435	630
33.0748	26	2.70621	4 1 0	47.4934	14	1.91287	333	61.3678	3	1.50950	4 5 2
34.4369	10	2.60223	042	47.9289	4	1.89650	4 0 4	61.8597	6	1.49867	271

图 1 Li₂WO₄: xEu 的 XRD 谱 Fig. 1 XRD patterns of Li₂WO₄: xEu

图 2 Li_2WO_4 : 0.06 Eu 的激发光谱(实线,以 λ_{ex} = 612 nm 作监测波长)和发射光谱(虚线,激发波长 λ_{em} = 395 nm)

Fig. 2 Excitation (solid line λ_{ex} =612 nm) and emission (dashed line λ_{em} =395nm) spectrum of Eu³⁺ in Li₂WO₄

表 2 $\operatorname{Li}_2 WO_4 : 0.06 \operatorname{Eu}$ 荧光体中 Eu^{3+} 的激发

光谱及跃迁归属($\lambda_{ex} = 612$ nm)

Table 2 Excitation spectral data of the Eu³⁺ ion in Li₂WO₄ : 0. 06Eu

波长 /nm	相对 强度	指认	波长 /nm	相对 强度	指认
311.0	55.13	₩−○荷移带	464.4	48.72	$^7F_0 {\twoheadrightarrow} ^5D_2$
360.6	25.64	$^7F_0 \rightarrow ^5D_4$	485.6	7.69	$^{7}\mathrm{F}_{2}$ \rightarrow $^{5}\mathrm{D}_{2}$
381.8	43.59	$^{7}\mathrm{F}_{0}$ \rightarrow $^{5}\mathrm{G}_{2}$	533.6	100.0	$^{7}F_{1} \rightarrow ^{5}D_{1}$
394.0	57.69	$^{7}F_{0} \rightarrow ^{5}L_{6}$	552.6	16.67	$^{7}\mathrm{F}_{2}$ \rightarrow $^{5}\mathrm{D}_{1}$
413.6	14.10	$^7\mathrm{F}_0 \rightarrow ^5\mathrm{D}_3$			

子 跃 迁 的 选 择 定 则, 其 中⁵D₂ →⁷F₀、⁵D₀ →⁷F₂、⁵D₀ →⁷F₆ 的跃迁是电偶极子跃迁, ⁵D₁→⁷F₀、⁵D₀→⁷F₁ 跃 迁的主要成份是磁偶极子跃迁。由于⁵D₀ 能级在晶 体场中不发生分裂,因此发射谱中的精细结构是⁵D₀ →⁷F₁ 的晶体场之间的跃迁的结果, 而 J 能级的晶体 场分裂程度与离子所处位置的对称性有关。因此, 根 据 Eu³⁺离子的位置对称性和有关的选择定则, 就可 推导出 Eu³⁺离子的⁵D₂→⁷F₁ 跃迁所产生的谱线数 目, 反之, 就可以从谱线的数目来推导 Eu³⁺离子所 处位置的对称性。

分别以各激发带的波长光激发,测得发射光谱 的谱峰的形状和位置均一致。在所测得的发射光谱 中,仅在 592nm 和 612 nm 处出现两个发射带,前者 属 Eu^{3+} 离子的⁵D₀→⁷F₁ 跃迁发射,是磁偶极子跃 迁,后者属⁵D₀→⁷F₂ 跃迁发射,是电偶极子跃迁, 且⁵D₀→⁷F₂和⁵D₀→⁷F₁ 跃迁发射的强度比约为 5: 1,从而推知掺杂的 Eu^{3+} 离子在晶体中所处的格位 不具有反演动作的对称性,说明掺杂的 Eu^{3+} 离子主 要处于非对称中心格位环境中,故呈现 $^{5}D_{0} \rightarrow ^{7}F_{2}$ 电 偶极子跃迁(ED)特征线发射。实验还观察到 $Li_{2}WO_{4}: 0.06Eu 荧光体中掺杂不同浓度的 <math>Eu^{3+}$ 离 子对激发光谱和发射光谱的谱峰的形状和位置没有 影响,但荧光发射强度随着 Eu^{3+} 离子浓度的增大而 增强,即使 Eu^{3+} 离子浓度达到基质摩尔分数的 0.20,也不发生浓度猝灭。

3 结论

Li₂WO₄: 0.06 Eu³⁺荧光体中掺杂的 Eu³⁺离子 处于非对称场格位环境中,且荧光发射强度随着 Eu³⁺离子浓度的增大而增强,即使 Eu³⁺离子浓度达 到基质摩尔分数的 0.20,也不发生浓度猝灭。 参考文献:

- [1] 杨水金,余新武,孙聚堂,等.掺杂稀土离子钨酸盐体
 系发光特性研究进展[J].化学研究与应用,2000,12
 (5):465-470.
- [2] 杨水金,孙聚堂,秦子斌.Na₂₄P₂W₂₂O₈₃的固相合成与 表征[J].合成化学,2000,8(1):75-78.
- [3] Yang Shuijin, Sun Jutang, Qin Zibin. Synthesis and luminescent properties of Eu³⁺ doped Na₂₄ P₂W₂₂O₈₃
 [J]. Chinese Chemical Letters, 1998, 9(10):911-912.
- [4] 杨水金,梁永光.TiSiW₁₂O₄₀/TiO₂ 催化合成葡萄糖酯 的研究[J].精细化工,2001,18(7):408-410.
- [5] Yang S J, Yu X Q, Liang Y G, et al. Catalytic Synthesis of n Amyl Cinnamate With TiSiW₁₂ O₄₀/ TiO₂. Frontiers of Solid State Chemistry[M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2002. 339-343.

Synthesis and Luminescent Properties of Eu³⁺-doped Li₂WO₄

YANG Shui-jin^{1,2}, SUN Ju-tang²

Department of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, China;
 College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China)

Abstract: The Eu^{3+} – doped Li_2WO_4 was prepared by solid phase reaction from Li_2CO_3 , WO_3 and Eu_2O_3 , and characterized by powder X-ray diffractometry. According to our measurements with X-ray diffraction, this material belongs to tetragonal system with its lattice constants: a = 14.2780 Å, c = 9.5863 Å, it is consistent with space group R $\overline{3}$ (No. 148). The emission and excitation spectra were measured. The luminescence properties of Eu^{3+} – doped Li_2WO_4 and energy transfer mechanism were discussed.

Key words: Eu³⁺; lithium tungstate; synthesis; luminescence

中国科协第五届青年学术年会将于 2004 年 11 月在上海举办

为了使更多的青年科技工作者为我国的科学技术进步、经济社会发展贡献才智和力量,为青年专家、学者提供学术 交流的机会和舞台,为青年学术骨干人才的脱颖而出创造条件,中国科协将于 2004 年 11 月 2 日至 5 日在上海举办第五 届青年学术年会。

会议学术交流主要为以下几部分:学科发展前沿问题;世界科技发展趋势;国家重大科技项目的研究成果以及在社 会经济建设中的应用开发成果;基础科学研究的重大成果;对 21 世纪可持续发展的探讨与展望。

年会除大会报告外,还设立15个分会场以及若干专题,围绕不同学科征集论文进行学术交流。

征集论文截稿日期为 2004 年 7 月 30 日(以稿件寄出地邮戳为准)。投稿者年龄限 45 岁以下(含 45 岁)。

会议详细情况请与赵崇海联系。

联系电话:010-68515739 68518822-21814

传真:010-68515739