Vol.33, No.4 April 2004

含纳米 V₂O₅ 颗粒钒催化剂的制备

高家诚,陈功明,杨绍利,徐楚韶,王 勇 (重庆大学,重庆 400044)

摘 要:介绍了1种制备纳米钒催化剂的新方法。用 TEM, SEM, XRD, DSC 等手段研究了纳米 V₂O₅ 溶胶-凝胶,以 及活性组分 V2O5 颗粒在钒催化剂中的形貌、大小和分布等。试验结果表明,随着水钒比的降低,纳米 V2O5 颗粒的形 状由针状、椭球状向球状变化; 制备纳米 V₂O₅ 溶胶-凝胶适宜的熔化工艺参数为 800℃~860℃, 15 min ~10 min。采用 本工艺方法制备出了含粒径为 30 nm~60 nm 的纳米 V2O5 溶胶-凝胶和纳米钒催化剂。

关键词: 溶胶-凝胶; 纳米 V₂O₅; 钒催化剂

中图法分类号: TO42 文献标识码:A 文章编号: 1002-185X(2004)04-0439-03

早在 1900 年, E. de 埃恩就用 V2Os 作生产硫酸的 催化剂^[1]。由于钒催化剂比铂催化剂的使用寿命长、 催化活性大、价格便宜、稳定性好,已广泛地用于生 产尼龙、轻质油、橡胶、聚苯乙烯和聚氯乙烯等。在 美国每年钒催化剂的用钒量就达 270 t~360 t, 硫酸工 业占 35%、石油工业占 35%、其它工业占 30%。普通 的钒催化剂是以硅酸或硅酸镁等为载体,约含 7%的 V₂O₅ 作为主要活性组分,以硫酸钾盐为助催化剂^[2]。 随着工业技术的发展,研制低温节能、宽温区高活性 的新型钒催化剂势在必行^[3,4]。

在钒催化剂中,钒化合物是活性组分,提高钒化 合物的表面活性势必改善钒催化剂的使用活性。而纳 米微粒的尺寸小、比表面积大,其位于表面的原子比 例大、表面能量高。如粒径 10 nm 时,其比表面积为 90 m²/g,表面原子达 20%。由于表面原子数增多,

表面原子的键态和电子态差异、配位不足和高的表面 能, 使这些表面原子具有高的活性^[5]。显然, 在催化 剂的制备中,若能减小活性组分的颗粒到纳米级,则 能显著提高其催化活性。尽管纳米级的催化剂目前还 处于实验室阶段,尚未见在工业上广泛应用,但有人 预计21世纪将是纳米微粒催化剂发展和应用的时代^[6]。 本研究就纳米 V₂O₅ 溶胶-凝胶及其纳米钒催化剂的 制备进行了试验研究,以探讨纳米钒催化剂的制备技 术。

试验材料及方法 1

本试验采用攀钢生产的工业 V2O5 片状晶体来制 备溶胶-凝胶^[7~10],其质量标准见 GB3283-87。催化剂 载体材料为山东硅藻土(30%)和吉林硅藻土(70%), 其化学分析结果如表1所示。

表 1 硅藻土的化学组成 Table 1 Composition of diatomite (w/%) SiO₂ Al₂O₃ CaO Area MgO MnO Р Na₂O K₂O Fe₂O₃ С Shandong 74.32 3.02 < 0.5 0.947 <0.1 0.020 0.28 0.22 0.536 0.653 Jilin 81.28 4.18 < 0.5 0.947 0.20 0.931 0.213

将 V₂O₅ 晶体放入 SX-10-13 电炉中熔化后,迅速 倒入蒸馏水中、搅拌均匀,即得 V₂O₅溶胶,进而获得 V2O5凝胶。用 ND-3 型数字式高温旋转粘度计测量其 粘度随浓度、时间的变化;用 STA449C 型综合热分析 仪测试其热稳定性;用 H-600 透射电子显微镜测量溶 胶中 V₂O₅颗粒的粒度、形状。然后,采用混合法制备 钒催化剂试样,并进行组织、性能分析检测。

0.009 < 0.1 0.60

试验结果及讨论 2

工业 V₂O₅ 水淬制备溶胶-凝胶的正交试验结果列 入表 2 中。可以看出,影响成胶的因素主要是熔化温 度和水钒比(W/V),当熔化温度在 700℃时, V₂O₅ 未 能完全熔化,无法获得溶胶-凝胶;而熔化温度为 900 ℃又略显偏高,有少量挥发损失。在本试验条件下,

收到初稿日期: 2002-07-30; 收到修改稿日期: 2002-09-16

作者简介: 高家诚, 1947年生, 教授, 博导, 重庆大学材料科学与工程学院, 电话: 023-65103122, E-mail: gaojch@cqu.edu.cn

• 440 •

33卷

工业 V₂O₅ 水淬制备溶胶-凝胶的最佳工艺参数为:水 钒比 (W/V) 30 ml/g~40 ml/g, 800℃, 15 min。进一

步优化重复试验发现,工业 V₂O₅水淬制备溶胶凝胶的 工艺参数可放宽为: 800℃~860℃, 15 min~10 min。

No.	H ₂ O/ml	V ₂ O ₅ /g	T/℃	t/min	Melting situation	Gel situation	Scoring
1	500	10	700	5	Non-melting	Non-quenching	1+1=2
2	500	15	800	10	Melting	Quickly forming del	5+5=10
3	500	20	900	15	Melting & Vaporing	Quickly forming del	4+5=9
4	600	10	800	15	Melting	Forming gel	5+4=9
5	600	15	900	5	Melting	Forming gel	5+4=9
6	600	20	700	10	Sime-melting	Part forming gel	3+3=6
7	700	10	900	10	More vaporing	Non- forming gel	3+2=5
8	700	15	700	15	Dark melting body	Non-forming gel	3+2=5
9	700	20	800	5	Melting	Forming gel	5+4=9
I	21	16	13	20			
П	24	24	28	21			
III	19	24	23	23			
R	5	8	15	3		the second second second	

表 2 工业 V₂O₅水淬制胶正交试验结果 Table 2 Orthogonal experimental results of primaring sols and gels from V₂O₂ crystal

室温下溶胶-凝胶的粘度随水钒比和时间的变化 如表 3、表 4。可以看出,当 W/V 大于 50 ml/g 时,溶 胶的粘度几乎为零;当 W/V 小于 50 ml/g 后,溶胶的 粘度则随着 W/V 减小而增大,随时间的延长而增大; 但 10 d 后其粘度变化趋于平缓。这说明,当 W/V 小 于 40 ml/g 时,可以形成凝胶。热分析发现,V₂O₅凝 胶在加热过程中除了水分挥发以外,没有其它变化, 且在 150℃以下水分挥发就基本结束,即稳定性较好。

表 3 溶胶-凝胶的粘度随水钒比的变化

1	able 3	Enec	t OI W/	v on	viscosity	OI SOIS	and geis	
W/V/	ml·g ⁻¹	70	60	50	40	35	30	25
m/De e	(3 d)	0	0	1	5	10	23	30
η/ra.s	(10 d)	0	0	2	- 8	26	40	48

表 4 溶胶-凝胶的粘度随时间的变化 Table 4 Effect of time on viscosity of cole and gel

	DIC T. J	Cincer or	tune on	TISCOSILY	01 3013	and Br	1112
	t/d	3	10	15	25	35	45
	W/V=4	40 5	8	11	13	15	16
$\eta/Pa.s$	W/V=2	35 10	26	33	35	36	38
	W/V=2	25 25	42	48	49	51	52

图 1 是溶胶中纳米 V₂O₅ 的颗粒 TEM 照片。可 以看出,纳米 V₂O₅ 颗粒为针状和球状,颗粒尺寸约 20 nm ~60 nm。纳米 V₂O₅ 颗粒的粒度和形状与 W/V 的关系如表 5 所示。从表 5 中可以看出,W/V 对纳 米 V₂O₅ 颗粒的粒度和形状有较大的影响。随着 W/V 的降低,V₂O₅ 颗粒变小变圆;当 W/V 小于 35 ml/g 时,颗粒基本为40 nm 的球。事实上,水钒比、熔化 温度和保温时间 3 个工艺参数对 V₂O₅颗粒的影响实 质上是一致的,即 V₂O₅熔体与蒸馏水之间的总热容 量之差的大小的影响。当 W/V 较大时,即总热容量 之差较大,急冷作用较强,且总的形核率亦较低,故 易出现较大的不规则的针状颗粒;反之,当 W/V 较 小时,即总热容量之差较小,冷却作用较弱,且总的 形核率较大,故易出现较小的规则的球状颗粒。显然, 熔化温度提高和保温时间延长,均使 V₂O₅熔体的热 容量增大,与 W/V 的影响机理是一致的。

图 1 V₂O₅ 颗粒的 TEM 照片 Fig.1 TEM micrographs of V₂O₅ particles

图 2 是用混合法制备的钒催化剂试样的 SEM 照 片。从图 2 中可见,白亮色小点活性组分纳米 V₂O₅ 颗粒在硅藻土表面的分布是比较均匀的。但还有待于 与浸渍法比较和进行催化性能等的试验^[11]。

表 5	水钒比对	V2O5颗粒大小的形状的影响
-----	------	----------------

Table 5 Effect of W/V on diameter and shape of V2O5 particle									
$W/V/ml \cdot g^{-1}$	20	25	35	45	50	55	70	120	130
D/nm	26	31	38	67	86	114	142		
Shape	- 20	Spherical	Spherical	Near spherical	Near spherical	Near spherical	Near spherical	Acicular	Acicular

高家诚等: 含纳米 V2O5颗粒钒催化剂的制备

图 2 钒催化剂的 SEM 照片 Fig.2 SEM micrograph of vanadium

3 结 论

 在本试验条件下,工业 V₂O₅ 水淬制备溶胶-凝胶的最佳工艺参数为:水钒比(W/V)30 ml/g~40 ml/g,熔化制度 800℃~860℃,15 min~10 min。

2) W/V 对纳米 V₂O₅ 颗粒的粒度和形状有较大的 影响。随着 W/V 的降低, V₂O₅ 颗粒变小变圆; 当 W/V 小于 35 ml/g 时, 颗粒尺寸基本为 40 nm 的球。

3)用混合法制备的钒催化剂中,白亮色小点活性 组分纳米 V₂O₅颗粒在硅藻土表面的分布是均匀的。

参考文献 References

[1] Huang Daoxin(黄道鑫). Extracting Vanadium and Steel-mak-

ing(提钒炼钢)[M]. Beijing: Metallurgy Industry Press, 2000: 114~115

- [2] Liu Weiqiao(刘维桥) et al. Practical Researching Methods for Solid Catalyzer(固体催化剂实用研究方法)[M]. Beijing: China Petrchemical Press, 2000: 205~215
- [3] Chen Zhenxing(陈振兴) et al. Chinese Journal of Catalysis(催化学报)[J], 2000, 21(4): 384~386
- [4] Zhang Pei(张 沛) et al. A Vanadium Catalyzer for H₂SO₄
 Production and Its Preparation(1 种硫酸生产用钒催化剂及 制备方法)[P]. Patent China: CN1144189A, 1997
- [5] Zhang Pingyuan(张平原) et al. Chemical Pusher and Polymer by Sol-Gel Method(化学推进剂与高分子材料)[J], 2000, (1): 16~19
- [6] Tong Maosong(童茂松) et al. Journal of Functional Materials(功能材料)[J], 2000, 31(3): 230~236
- [7] Benmoussa M, Ibnouelghazi E. Thin Solid Films[J], 1995, 22(3): 265
- [8] Naok U, Shigeharu K. J Phys Chem[J], 1994, 98(2): 2 129~2 133
- [9] Luksich J. J Sci Technol[J], 1991, 9(3):542~546
- [10] Hideki M. Structural Analysis of Molten V₂O₅[J]. J Chem Soc, 1981, 77(4): 361~367
- [11] Zhu Qinwei (朱沁伟) et al. Journal of Functional Materials(功能材料)[J], 2000, 4(6): 660~661

New Process of Preparation Vanadium Catalyst with Nanosized V2O5 Particles

Gao Jiacheng, Chen Gongming, Yang Shaoli, Xu Chushao, Wang Yong (Chongqing University, Chongqing 400044, China)

Abstract: A new process of preparing the vanadium catalyst with nanosized V_2O_5 particles was introduced. The inorganic sol-gel method was used to prepare the sols and gels with nanosized V_2O_5 particles. The morphology, size and distribution of the nanosized V_2O_5 particles in the sols-gels and vanadium catalyst were studied by TEM, SEM, XRD and DSC. The results show that as the decline of the W/V (the rate of water and vanadium), the morphology of the nanosized V_2O_5 particles varies from acicular-like shape to near-ellipse then to sphere. The better process to prepare the sols and gels with nanosized V_2O_5 particles is $800^{\circ}C \sim 860^{\circ}C$, 15 min ~10 min. The sols-gels and catalyst with 30 nm~60 nm V_2O_5 particles have been obtained by this process.

Key words: sol-gel; nanosized V2O5 particles; vanadium catalyst

Biography: Gao Jiacheng, Professor, Supervisor of Ph.D Candidates, Dean of College of Material Science and Engineering, Chongqing 400044, P.R. China, Tel: 0086-23-65103122, E-mail: gaojch@cqu.edu.cn