西安交通大学学

Vol. 39 №1 Jan. 2005

报

Sr 在碱硬锰矿固溶体中的化学固溶量研究

JOURNAL OF XI'AN JIAOTONG UNIVERSITY

滕元成¹,周时光²,肖正学²,董发勤¹,王成端²

(1. 西南科技大学材料科学与工程学院, 621010, 绵阳; 2. 西南科技大学环境工程学院, 621010, 绵阳)

摘要:以 SrCO₃、BaCO₃、Al₂O₃和 TiO₂为原料,通过配方设计,采用高温固相反应,合成了单相固溶 Sr 的碱硬锰矿固溶体.借助于 X 射线衍射、扫描电子显微镜和电子探针波谱等分析手段,研究了配方设计、 Sr 在碱硬锰矿固溶体中的化学固溶量等问题.实验结果表明,采用高温固相反应工艺,容易合成掺 Sr 碱 硬锰矿固溶体及单相掺 Sr 碱硬锰矿固溶体,但是 Sr 在碱硬锰矿固溶体中的最高化学固溶量与配方设计有 关,当配方的化学式为 Sr_xBa₁Al_{2+2x} Ti_{6-2x} O₁₆时,其最大化学固溶量为 0.13 mol,而当配方的化学式为 Sr_{x+y}Ba_{1-y}Al_{2+2x} Ti_{6-2x}O₁₆时,其最大化学固溶量为 0.22 mol. Sr 在碱硬锰矿固溶体中的最高固溶量还与合 成方法有关,采用均相化学反应法合成的单相掺 Sr 碱硬锰矿固溶体中 Sr 的最高化学固溶量要高于固相反 应法合成的固溶体中 Sr 的最高化学固溶量.

关键词:碱硬锰矿;放射性核废物处置;固溶体;固溶量;Sr

第 39 卷 第 1 期

2005年1月

中图分类号: X781.5;O799;TB321 文献标识码: A 文章编号: 0253-987X(2005)01-0100-04

Chemical Solid-Soluted Content of Strontium in Solid Solution of Hollandite

Teng Yuancheng¹, Zhou Shiguang², Xiao Zhengxue², Dong Faqin¹, Wang Chengduan²

(1. Institute of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China;

2. Institute of Environment Engineering, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract: Using SrCO₃, BaCO₃, Al₂O₃ and TiO₂ as row materials, the single phase solid solution of hollandite of solid-soluted strontium was synthesized by the designed formulas and high temperature solid phase reaction. The design of formulas and the chemical solid-soluted content of strontium in solid solution of hollandite were investigated by X-ray diffraction, scanning electron microscope and wave dispersion spectrum. The experimental results indicate that the solid solution or single phase solid solution of hollandite with solid-soluted strontium can be easily synthesized by high temperature solid phase reaction, but the maximum chemical solid-soluted content of strontium is related to the design of formulas. It is 0. 13 mol for the formula of $Sr_x Ba_1 Al_{2+2x} Ti_{6-2x} O_{16}$, and 0. 22 mol for the formula of $Sr_{x+y} Ba_{1-y} Al_{2+2x} Ti_{6-2x} O_{16}$. The highest chemical solid-soluted amount of strontium in solid solution of hollandite is linked with synthesis method. The concentration of solid-soluted strontium in single phase solid solution of hollandite synthesized by homogeneous chemical reaction is higher than that by high temperature solid phase reaction. **Keywords**: *hollandite*; *disposal of radioactive waste*; *solid solution*; *solid-soluted content*; *strontium*

为了安全有效地处置放射性核废物,国内外的 学者进行了大量的研究工作,其中在对中高放水平 核废物的人造岩石固化(即晶格固化)方面取得了许 多研究成果^[1-7].人造岩石固化通过选择在自然环境 中稳定性非常好的钙钛锆石、碱硬锰矿、钙钛矿和金 红石等作为固化介质^[1,2,5,7],可将中高放射性废物 中的放射性核素固定在其晶格中,从而实现长寿命 放射性核素安全有效的固化处置.目前,这项技术尚

收稿日期:2004-06-16. 作者简介: 滕元成(1964~),男,副教授. 基金项目:国家自然科学基金委员会与中国工程物 理研究院联合基金资助项目(10176025).

未实现工程化应用,还有不少技术、固化成本等方面 的问题需要解决.

本文选择自然界非常稳定的碱硬锰矿^[1,2,5]作 为人造岩石固化 Sr 的目标矿物,以来源广泛、价格 较为低廉的 BaCO₃、SrCO₃、TiO₂ 和 Al₂O₃ 为原材 料,采用简单的高温固相反应工艺合成碱硬锰矿,研 究了 Sr 在碱硬锰矿固溶体晶格中的固溶量,以期为 利用碱硬锰矿固化处置含⁹⁰ Sr 中高放水平核废料的 工程化应用奠定基础.

1 实验

1.1 实验工艺

实验以 $BaCO_3$ 、 $SrCO_3$ 、 TiO_2 和 Al_2O_3 为原料, 借助高温固相反应法合成掺 Sr 碱硬锰矿固溶体 ($Sr_xBa_1Al_{2+2x}Ti_{6-2x}O_{16}$ 或 $Sr_{x+y}Ba_{1-y}Al_{2+2x}Ti_{6-2x}O_{16}$), 以探讨 Sr 在碱硬锰矿固溶体中的化学固溶量.考虑 到本项目将来的工程化应用,工艺流程选择的指导 思想是工艺简单实用,工序少,尽量避免或减少固化 处置过程中可能带来的二次污染.本研究采用的工 艺流程如下

配方设计→配料计算→配料→干法混料细磨→ 高温煅烧→分析检测

1.2 配方设计及样品制备

1.2.1 配方设计的指导思想 利用晶体结构绘图 软件,可以绘制图 1 所示的碱硬锰矿(BaAl₂ Ti₆O₁₆) 的晶体结构模型. 由图 1 可见,碱硬锰矿晶体结构 中的Ba-O 配位多面体有 1/3 没有被 Ba 填充. 晶 体中 6 配位的 Al³⁺离子半径为 0.52×10⁻¹⁰ m,6 配 位的 Ti⁴⁺离子半径为 0.61×10⁻¹⁰ m^[8], Al³⁺和 Ti⁴⁺可以相互置换固溶,这就为碱硬锰矿固溶体 (Ba_{1+y}Al_{2+2y}Ti_{6-2y}O₁₆)的形成创造了条件.

在晶体中,当 Ba^{2+} 的配位数为 10 和 12 时,其 离子半径分别为 1.52×10^{-10} m 和 1.60×10^{-10} m, 当 Sr^{2+} 的配位数为 10 和 12 时,其离子半径分别为 1.32×10^{-10} m 和 1.44×10^{-10} m^[8],根据固溶体 形成的条件^[9],在特定工艺条件下 Sr 有可能置换 Ba 并占据碱硬锰矿固溶体 Ba 的格点,或者进 入没有填充 Ba 的 Ba - O 配位多面体间隙,或者 是两种情况都存在,即生成掺 Sr 碱硬锰矿固溶体 $Sr_xBa_1Al_{2+2x}Ti_{6-2x}O_{16}$ 或 $Sr_{x+y}Ba_{1-y}Al_{2+2x}Ti_{6-2x}O_{16}$. 1.2.2 实验配方及样品制备 为了研究 Sr 在碱硬 锰矿固溶体中的化学固溶量,根据上述配方设计的 指导思想及样品制备的工艺流程,设计了表 1 所示 的配方,并制备了相应的实验样品.

图 1 碱硬锰矿 $(BaAl_2 Ti_6 O_{16})$ 的晶体结构模型

设计 1[#]、2[#]、3[#]样品配方的指导思想是:引入 Sr 形成掺 Sr 碱硬锰矿固溶体, Sr²⁺占据碱硬锰矿 晶体中没有被 Ba²⁺填充的"空"Ba-O 配位多面体 间隙, 配方的化学式为 Sr_xBa₁Al_{2+2x} Ti_{6-2x} O₁₆. 将 4[#]样品(主要物相为碱硬锰矿固溶体 Ba_{1.2}Al_{2.4}Ti_{5.6}O₁₆, 同时存在少量的 BaTi₄O₉, 见图 2)和 5[#]样品(物相为 SrTiO₃, 见图 2)各分成 2 份, 分别取其中的 1 份, 按 n (Ba_{1.2} Al_{2.4} Ti_{5.6} O₁₆ + BaTi₄O₉): n(SrTiO₃)=0.98: 0.02(摩尔比)混合 并细磨,得到 6[#]样品.设计 7[#]、8[#]和 9[#]样品配 方的指导思想是:引入 Sr 形成掺 Sr 碱硬锰矿固 溶体, 一部分 Sr²⁺占据 Ba²⁺的"正常"格点, 剩 余的 Sr²⁺占据碱硬锰矿晶体中没有被 Ba²⁺填充 的"空"Ba-O 配位多面体间隙, 配方的化学式 为 Sr_{x+y}Ba_{1-y}Al_{2+2x}Ti_{6-2x}O₁₆.

表1 实验配方及样品

样品号	配方号	副士的化学士	煅烧温度	保温时间
		配刀叫心子环	/ °C	$/\min$
1#	1#	$Ba_1Sr_{0.05}Al_{2.1}Ti_{5.9}O_{16}$	1 300	30
2#	2#	$Ba_1Sr_{_{0.1}}Al_{_{2.2}}Ti_{_{5.8}}O_{_{16}}$	1 300	30
3#	3#	$Ba_1Sr_{0.15}Al_{2.3}Ti_{5.7}O_{16}$	1 300	30
4#	4#	$Ba_{1.2}Al_{2.4}Ti_{5.6}O_{16}$	1 300	30
5#	5#	$SrTiO_3$	1 300	30
7#	7#	$Ba_{0.88}Sr_{0.22}Al_{2.2}Ti_{5.8}O_{16}$	1 300	30
8#	8#	$Ba_{0.85}Sr_{0.25}Al_{2.2}Ti_{5.8}O_{16}$	1 300	30
Q#	9 <i>#</i>	Bas as Store Alars Tip 74 Out	1 300	30

2 分析与讨论

2.1 X射线衍射分析与讨论

采用日本理学电机公司的 $D/max \parallel A \supseteq X 射$ 线衍射仪对实验样品进行了 X 射线衍射(XRD)分 析,所有样品的衍射条件相同,结果见图 $2 \sim \mathbb{B}$ 4.

为了测算在 XRD 分析中出现 $SrTiO_3$ 的衍射 峰时样品中 $SrTiO_3$ 的最低含量,对 4^{\pm} 、 5^{\pm} 、 6^{\pm} 样品

图 3 1[#]、2[#]、3[#] 样品的 XRD 图谱(Cu-Ka)

进行了 XRD 分析,结果见图 2. 分析图 2 可知,当样 品中 SrTiO₃ 的摩尔分数达到 2%时(6[#]样品),明显 出现了 SrTiO₃ 的最强衍射峰(晶面间距 d=2.757 $\times 10^{-10}$ m),说明 XRD 分析能够检测出的 SrTiO₃ 的最低摩尔分数小于或等于 2%.

分析图 3 可知,1[#]、2[#]样品仅有碱硬锰矿固溶体的衍射峰,没有发现其他物相,说明碱硬锰矿固溶体固溶了 Sr. 3[#]样品的主要物相是掺 Sr 碱硬锰矿固溶体,同时还含有少量的 SrTiO₃,这表明 Sr 在碱硬锰矿固溶体中的固溶量是有限的.

综上所述,可以得到如下结论:①采用化学式为 $Sr_x BaAl_{2+2x} Ti_{6-2x} O_{16}$ 的配方并在1 300 C 煅烧,容

图 4 7[#]、8[#]、9[#] 样品的 XRD 图谱(Cu-Ka)

易合成掺 Sr 碱硬锰矿固溶体,通过配方设计,也容 易合成不含其他物相的单相掺 Sr 碱硬锰矿固溶体, 这与我们根据碱硬锰矿(BaAl₂Ti₆O₁₆)的晶体结构 模型进行的理论分析和预测是一致的,证明了配方 设计的正确性;②Sr 在碱硬锰矿固溶体中的固溶量 是有限的,要合成纯(单相)掺 Sr 碱硬锰矿固溶体, Sr 的掺入量必须控制在一定范围以内,若超过这一 范围,部分 Sr 会生成 SrTiO₃.

仔细分析 3[#] 样品和 6[#] 样品中 SrTiO₃ 最强衍 射峰的相对强度,发现 3[#] 样品和 6[#] 样品中 SrTiO₃ 的含量相同,据此可推算,3[#] 样品中含有 2 % 的 SrTiO₃和 98 %的掺 Sr 碱硬锰矿固溶体(均为摩尔 分数).1 mol 3[#] 样品中含有 Sr 0.15 mol,其中形成 SrTiO₃ 消耗的 Sr 为 0.02 mol,剩余的 0.13 mol Sr 固溶于碱硬锰矿固溶体中.因此,通过高温固相反应 合成单相掺 Sr 碱硬锰矿固溶体,其设计配方的化学 通式为 Sr_xBa₁Al_{2+2x} Ti_{6-2x}O₁₆, Sr 在碱硬锰矿固溶 体中的最高化学固溶量约为 0.13 mol.

由图 4 可见: 7^{*} 样品中仅有掺 Sr 碱硬锰矿固 溶体; 8^{*} 、 9^{*} 样品中除主要物相掺 Sr 碱硬锰矿固溶 体外,还存在少量的 SrTiO₃ 和少量未反应的 TiO₂, 这是由于 8^{*} 、 9^{*} 配方中 Sr 的掺入量超过了 Sr 在碱 硬锰矿固溶体中的最大固溶量,过量的 Sr 反应生成 了 SrTiO₃,同时剩下了少量未反应的 TiO₂.

仔细分析图 2 与图 4 中 6^* 、 8^* 、 9^* 样品的 SrTiO₃最强衍射峰的相对强度发现, 8^* 、 9^* 样品中 SrTiO₃ 的含量相同,而 6^* 样品中 SrTiO₃ 的含量要 略低一点,据此可推算出 8^* 、 9^* 样品含有约 3%的 SrTiO₃和 97%的掺 Sr 碱硬锰矿固溶体(均为摩尔 分数). 1 mol 的 8[#] 或 9[#] 配方含有 Sr 0.25 mol,其 中形成 SrTiO₃ 消耗的 Sr 为 0.03 mol,剩余的 0.22 mol Sr 固溶于碱硬锰矿固溶体中. 因此,通过高温 固相反应合成单相掺 Sr 碱硬锰矿固溶体的配方化 学通式为 Sr_{x+y}Ba_{1-y}Al_{2+2x} Ti_{6-2x}O₁₆, Sr 在碱硬锰 矿固溶体中的最高化学固溶量约为 0.22 mol. 2.2 扫描电镜及电子探针波谱分析与讨论

采用日本电子公司生产的 JXA-733 型扫描电 子显微镜,对 2[#]样品进行了扫描电镜(SEM)分析 及电子探针波谱(WDS)分析,结果见图 5 和表 2.

晶粒	$w(\operatorname{SrO}) w(\operatorname{BaO}) w(\operatorname{TiO}_2) w(\operatorname{Al}_2\operatorname{O}_3)$) 化学士
	/ %	/ %	/ %	/ %	化子环
1	0.78	22.00	64 . 78	12.44	$Sr_{0.\ 056\ 4}Ba_{1.\ 074}Al_{1.\ 826}Ti_{6.\ 066}O_{16}$
2	3.21	19.98	59.15	17.66	$Sr_{0.229}Ba_{0.965}Al_{2.564}Ti_{5.480}O_{16}$
3	0.90	21.19	65.00	12.90	$Sr_{0.\ 064\ 6}Ba_{1.\ 027}Al_{1.\ 880}Ti_{6.\ 044}O_{16}$
4	0.99	22.34	62 . 52	14.15	$Sr_{0.\ 071\ 6}Ba_{1.\ 091}Al_{2.\ 079}Ti_{5.\ 860}O_{16}$
平均值	1.47	21.38	62.86	14.28	$Sr_{0.106}Ba_{1.039}Al_{2.088}Ti_{5.862}O_{16}$

表 2 2# 样品的电子探针波谱分析

图 5 2[#] 样品的 SEM 照片

SEM 分析表明,2[#] 样品的晶粒为柱状晶,粒度 比较均匀,晶体的宽度为 $1 \sim 2.5 \mu m$,长度为 $5 \sim 10 \mu m$,可利用电子探针准确地选取单个晶粒进行 波谱分析.

表 2 分别列出了 2[#]样品中 4 个不同晶粒的波 谱分析结果. 分析表 2 可知, 4 个晶粒均为掺 Sr 碱 硬锰矿固溶体,这与 XRD 的分析结果是一致的. 根 据 4 个晶粒化学组成的平均值计算出的固溶体的化 学式为 Sr_{0.106} Ba_{1.039} Al_{2.088} Ti_{5.862} O₁₆,表明 2[#]样品的 物相为掺 Sr 碱硬锰矿固溶体,这与我们预期合成的 物相基本一致,也和我们对碱硬锰矿晶体结构的分 析、预测以及配方设计是一致的.

由表 2 可知,单个晶粒的化学计量存在较大偏差,这是因为各反应物的细磨混料采用的是干法,物料的极限粒度只能达到 1 μm,反应物的混合不够均匀,造成局部化学反应不均匀,因而出现了反应产物化学计量的差异.由晶粒 2 的化学式可以推断,采用

均相化学反应法合成的单相掺 Sr 碱硬锰矿固溶体中 Sr 的最高化学固溶量要高于固相反应法合成的 固溶体中 Sr 的最高化学固溶量.

3 结 论

(1)采用高温固相反应工艺容易合成掺 Sr 碱硬 锰矿固溶体及单相掺 Sr 碱硬锰矿固溶体.

(2)对于合成的单相掺 Sr 碱硬锰矿固溶体,Sr 在碱硬锰矿固溶体中的最大固溶量与配方设计和合 成方法有关.当 Sr 掺入量超过固溶量时,过量的 Sr 与 TiO₂ 反应生成 SrTiO₃.

(3)对于通过高温固相反应合成的单相 掺 Sr 碱硬锰矿固溶体,当其设计配方的化学 通式为 $Sr_x Ba_1 Al_{2+2x} Ti_{6-2x} O_{16}$ 时, Sr 的最高 化学固溶量约为 0.13 mol, 而当其化学通式 为 $Sr_{x+y} Ba_{1-y} Al_{2+2x} Ti_{6-2x} O_{16}$ 时, Sr 的最高 化学固溶量为 0.22 mol.

(4)Sr 在采用均相化学反应法合成的单相掺 Sr 碱硬锰矿固溶体中的最高化学固溶量高于其在固相 反应法合成的固溶体中的固溶量.

参考文献:

- [1] 朱鑫璋,罗上庚,汪德熙. 锕系核素的人造岩石固化 [J]. 核科学与工程,1997,17(2):173-178.
- [2] 朱鑫璋,罗上庚,汤宝龙,等. 富钙钛锆石型人造岩石 固化模拟锕系废物研究:I[J]. 核科学与工程,1999, 19(2):182-186.
- [3] 杨建文,罗上庚,李宝军,等. 富烧绿石人造岩石固化 模拟锕系废物[J]. 原子能科学技术,2001,35(增刊): 104-109.
- [4] 杨建文,罗上庚,李宝军,等. 天然锆英石固化模拟锕 系废物[A]. 中国原子能科学研究院年报[C]. 北京: 原子能出版社,2000. 58.
- [5] 张传智,张宝善,郄东生,等. 高放废液合成岩石固化研究[J]. 辐射防护,1997,17(6):417-426.
- [6] 李利宇,罗上庚,汪德熙. 用人造岩石固化模拟高钠高 放废液[J]. 清华大学学报(自然科学版),1997,37
 (5):50-53.
- [7] Ringwood A E, Kesson S E, Ware N G, et al. Immobilisation of high level nuclear reactor waste in SYN-ROC[J]. Nature, 1979, 278(5 701): 219-223.
- [8] 李标荣,王筱珍,张绪礼.无机电介质[M].武汉:华中 理工大学出版社,1995.
- [9] 浙江大学,武汉建筑材料工业学院,上海化工学院,等. 硅酸盐物理化学[M].北京:中国建筑工业出版社, 1980.

(编辑 葛赵青)